2,000 research outputs found

    Superfluid-Mott Insulator Transition of Spin-1 Bosons in an Optical Lattice

    Full text link
    We have studied superfluid-Mott insulating transition of spin-1 bosons interacting antiferromagnetically in an optical lattice. We have obtained the zero-temperature phase diagram by a mean-field approximation and have found that the superfluid phase is to be a polar state as a usual trapped spin-1 Bose gas. More interestingly, we have found that the Mott-insulating phase is strongly stabilized only when the number of atoms per site is even.Comment: 9 pages, 1 figur

    Methods for estimating the propensity score when weighting volunteer web samples : a comparison of strategies for variable choice

    Get PDF
    Propensity scores have been suggested in previous literature as a method for weighting volunteer web samples in survey research (APPOR, 2013; Couper, 2000; Duffy et al., 2005; Lee, 2004; Lee, 2006; Lee & Valliant, 2009; Schonlau et al., 2007; Valliant & Dever, 2011). However, researchers have been somewhat unclear on their methods of building the propensity score model itself. Some researchers have suggested the use of webographic variables, or attitudinal variables, in these models to account for differences between Internet users and non-users beyond demographics, like differences in lifestyles and opinions, but their effectiveness in decreasing the bias in unadjusted volunteer web sample estimates is unclear. This study investigated the use of webographic variables in the propensity score model when using propensity scores as a weighting method. Results showed that including all demographics was important for decreasing bias in the unadjusted estimate as well as including webographics that were related to having Internet access or to the study variable in question.Thesis (M.S.)Department of Educational Psycholog

    Performance limitations of subband adaptive filters

    Get PDF
    In this paper, we evaluate the performance limitations of subband adaptive filters in terms of achievable final error terms. The limiting factors are the aliasing level in the subbands, which poses a distortion and thus presents a lower bound for the minimum mean squared error in each subband, and the distortion function of the overall filter bank, which in a system identification setup restricts the accuracy of the equivalent fullband model. Using a generalized DFT modulated filter bank for the subband decomposition, both errors can be stated in terms of the underlying prototype filter. If a source model for coloured input signals is available, it is also possible to calculate the power spectral densities in both subbands and reconstructed fullband. The predicted limits of error quantities compare favourably with simulations presented

    Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in magnetic field

    Get PDF
    Properties of spin-1 Bose gases with ferromagnetic interaction in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the Random Phase Approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory.Comment: 8 pages and 3 figures included in text, submitted to Physical Review

    Nanoplasmonics beyond Ohm's law

    Full text link
    In tiny metallic nanostructures, quantum confinement and nonlocal response change the collective plasmonic behavior with important consequences for e.g. field-enhancement and extinction cross sections. We report on our most recent developments of a real-space formulation of an equation-of-motion that goes beyond the common local-response approximation and use of Ohm's law as the central constitutive equation. The electron gas is treated within a semi-classical hydrodynamic model with the emergence of a new intrinsic length scale. We briefly review the new governing wave equations and give examples of applying the nonlocal framework to calculation of extinction cross sections and field enhancement in isolated particles, dimers, and corrugated surfaces.Comment: Invited paper for TaCoNa-Photonics 2012 (www.tacona-photonics.org), to appear in AIP Conf. Pro

    Bose-Einstein condensation at constant temperature

    Full text link
    We present a novel experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular the emergence of a new condensate is observed in multi-component F=1 spinor condensates of 87-Rb. Furthermore we develop a simple rate-equation model for multi-component BEC thermodynamics at finite temperature which well reproduces the measured effects.Comment: 4 pages, 3 figures, RevTe

    Ultra-precise measurement of optical frequency ratios

    Full text link
    We developed a novel technique for frequency measurement and synthesis, based on the operation of a femtosecond comb generator as transfer oscillator. The technique can be used to measure frequency ratios of any optical signals throughout the visible and near-infrared part of the spectrum. Relative uncertainties of 10−1810^{-18} for averaging times of 100 s are possible. Using a Nd:YAG laser in combination with a nonlinear crystal we measured the frequency ratio of the second harmonic νSH\nu_{SH} at 532 nm to the fundamental ν0\nu_0 at 1064 nm, νSH/ν0=2.000000000000000001×(1±7×10−19)\nu_{SH}/\nu_0 = 2.000 000 000 000 000 001 \times (1 \pm 7 \times 10^{-19}).Comment: 4 pages, 4 figure
    • …
    corecore